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The article suggests an algorithm for minimizing the weight of multilayer fusing 
HIC with constraints concerning the surface temperatures of the layers. 

When the heat insulation of various structures against the effect of a hot environment 
is worked out, the problem of determining the dimensions of the layers of multilayer heat 
insulating coatings (HIC) with minimal weight arises. As a rule, additionally, constraints 
as to the change of temperature at specified points of the HIC are being specified. In 
various kinds of heat insulation the outer layer of the HIC may be destroyed after initial 
heating, and the weight of the coating gradually decreases. This is made use of in; designing 
HIC of minimal weight for one-time use. To select a fusing HIC that is optimal in weight, 
it is necessary to solve the corresponding variational problem. 

Second boundary conditions are specified, at the initial instant the HIC is uniformly 
heated throughout, thermal contact between the layers is ideal. Then the temperature of the 
layers can be determined from the solution of the following boundary-value problem: 
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At the instant t~ the temperature of the outer layer of the HIC attains the melting 
point T~ of the material of the n-th layer. It is assumed that the molten mass is removed 

The mathematical formulation of the problem for the fusing 
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where  T i ( x ,  t~0), i = 1, 2, . . . ,  n ,  h n a r e ,  r e s p e c t i v e l y ,  t h e  t e m p e r a t u r e  o f  t h e  HIC o b t a i n e d  
f rom t h e  s o l u t i o n  o f  t h e  p r o b l e m  ( 1 ) - ( 5 )  and t h e  t h i c k n e s s  o f  t h e  n - t h  l a y e r  b e f o r e  f u s i o n .  

We h a v e  t o  d e t e r m i n e  t h e  t h i c k n e s s e s  o f  t h e  l a y e r s  h~ > 0, i = 1, 2, . . . ,  n ,  f rom t h e  
solution of the problem of minimizing the weight of the HI~ we have 
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Then the initial problem reduces to the problem of determining the minimum of function 
(16) with the condition that ~ = 0. To obtain a solution, an algorithm was used that was 
based on minimizing the penalty function with a selected value of function (16) with the 
subsequent selection of the weight in dependence on the minimum of the function ~. 

Step 0. Select the initial approximation ~0 = {h~, i = i, 2 ..... n}, the parameter 
E > 0, put k = 0. 

Step i. If r > 0, go to step 2, if ~(h -k) = 0, go to step 3. 

Step $. Calculate M k = M(h-k). Determine the minimum h** of the function r in the 
set {h:M(~) = Mk}. If r > 0, calculate h -k+l = h ~:=* - ~7MI and go to step i. If ~(h**)--0, 

calculate ~h+l = ~**evM I and go to step i. 

Step 3. Calculate h -k+1 = ~(k) _ sVMz and go to step i. 

Calculation according to the algorithm is terminated on condition that from k = N 
onward, /~/ih ~Mik+2, Mik+I =/~2h+3 ; here, the accuracy of determining the minimum 
weight of the HIC with the specified constraints depends on the parameter r 

The minimum of the function ~ at the step 2 can be found by one of the gradient methods, 
with the projection of 7~z, M of the gradient 7~ on the plane with the normal 7M used as 

gradient of the minimizing function: 
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TABLE i. Results of the Optmization of Weight 

r~ n, n, [ h~(f h) M[t= o Mlt=t h 
I 

1,17 
No fusion 

0,75586 
0,71156 

0,34162 I. 0,32672 
0,387 1 0,387 

0,71955 
0,74278 

0,70465 
0,74278 

The algorithm of minimization using the above formulas was realized in the form of 
a computer program with which a number of methodological examples were calculated. The 
boundary-value problems were solved by the combined numerical and analytical method [6, 7] of 
seeking the solution in the form of a power series with respect to the space coordinate. 
This made it possible to take the integrals with respect to x in formulas (33), (35)-(37) 
analytically, which saved computer time and increased the accuracy of determining the 
gradient. To find the minimum of the function r the method of steepest descent was used. 
This does not exclude the possibility of using more effective gradient methods of determining 
the extremum at this step. 

As an example we solve the problem for a two-layer HIC with the following initial 
data: !l = !2 = i, kl = h2 = 1 pl = 0.5, P2 = i, L 2 = 2, Tr = 1.17, q0(t) = 0, q2(t) = i, 
t k = i, Tperl = 0.72711, T 2per = 6.95856, e = 0.0025. For the sake of comparison we solved 

the same problem but with the provision that the temprature T~ is much higher and that there 
is no fusion. The results are presented in Table i. 

For a nonfusing two-layer HIC we calculated variants with the initial data of [2] as 
test problems. The results of the optimization coincide. 

It can be seen from the values of the weight in Table 1 that fusing HIC is lighter than 
nonfusing one, and in addition, its weight decreases in time. When the material of the layers 
is adequately chosen, this effect may be considerable, and it may be used in designing HIC 
with minimum weight for a single use. 

Our calculations showed that the algorithm for minimizing the linear function with 
nonlinear convex constraints is highly effective. Whereas the existing algorithms [8-11] 
for solving the problem with the aid of penalty functions reduce the initial problem to a 
sequence of problems of unconditional minimization of the sum of the penalty function and of 
the minimizing function with changing penalty parameters, our algorithm does not require 
the penalty parameters to be selected. In addition, the accuracy of determining /he minimum 
of the penalty function at each step is different. Higher accuracy in finding this minimum 
is required in the vicinity of the minimal weight. 

NOTATION 

T, temperature; a, thermal diffusivity; %, thermal conductivity; 9, density; L, 
specific heat of fusion; T~ , melting point; x, coordinate; t, time; t~, onset of fusion; 
t k, right-hand limit of a time interval; i = i~ 2, ..., n, number of the layer of the HIC; 
M, weight of the HIC; q(t), specific heat flux; T~er, specified maximal permissible tempera- 
ture; h, thickness of the layer; ~, penalty functlon; g, constraint function; V~, gradient 
of the penalty function; ~, D, conjugate functions. 
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EFFECT OF THE FREQUENCY OF THE EXTERNAL MAGNETIC FIELD 

ON THE BEHAVIOR OF THE ARC IN A TWO-JET PLASMATRON 

S. P. Polyakov and N. V. Livitan UDC 533.9 

The results of studies of the frequency characteristics of an electric arc in a 
two-jet plasmatron in a transverse magnetic field are presented. 

Interest in the dynamic characteristics of an electric arc has increased significantly 
in recent years. Thus in [I] the frequency characteristics of the shunting of the arc in 
the output electrode of the plasmatron with interelectrode inserts were studied. The 
frequency characteristics of the radial pulsations of the arc column in a longitudinal gas 
flow in different characteristic sections of the channel are also presented here. In [2], 
together with an analysis of the shunting of an arc discharge in a longitudinal channel, 
the oscillations of the electric arc in a transverse gas flow are described. In the cases 
studied the pulsational characteristics of the electric arc are determined primarily by the 
hydrodynamic parameters of the gas flows bathing the arc, for example, the degree of its 
turbulence [i], and depend on the form and proximity of the walls of the arc channel. The 
imposition of a magnetic field on the arc has a substantial effect on the behavior of the 
electric arc in a channel [i, 3]. In addition, diverse effects accompanying the burning of 
the arc in a limited channel, are superposed on the frequency characteristics of the electric 
arc itself, and they cannot be distinguished in a pure form. 

The behavior of an open arc, stabilized by an accompanying gas flow, in a magnetic field 
has never been adequately studied, though it is of general scientific and practical interest 
because of the widespread use of and prospects for two-jet plasmatrons. 

It is shown in [4] that the imposition of a transverse alternating magnetic field on 
the anodic and cathodic sections of an electric arc in a two-jet plasmatron enables the 
realization of effective control of the motion of its sections and the regulation of the power 
generated in it. The mathematical dependences describing the change in the angle of inclination 
of the electric field under the action of a constant or weakly varying magnetic field (the 
frequency of the external alternating magnetic field is equal to 50 Hz) are also presented 
there. 
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